Abstract
The development of single-atom catalysts anchored on two-dimensional (2D) conductive matrix with well exposed active sites has great significance in electrocatalytic energy storage yet remains challenging. Inspired by the power of biomolecular self-assembly in making delicate nanostructures, we report a novel template-free folic acid (FA) self-assembly strategy to achieve the facile preparation of ultrathin N-doped carbon nanosheet confining single-metal-atom catalysts (M-N-C SAC, M = Co, Ni, Zn, Fe). The 2D association of FA is developed for the first time via the ribbon-like H bonding pattern and metal-FA coordination in a mixed solvent. A tunable metal loading content of the catalysts is facilely realized through a pH-tuned FA partial dissociation chemistry. As a proof of demonstration, Co-N-C SAC shows an excellent performance for lean electrolyte lithium-sulfur battery. Our findinging suggest a new and potentially scalable route for facile fabrication of M-N-C SACs for broad energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.