Abstract

Cleft palate is a frequent congenital malformation with a heterogeneous etiology, for which folic acid (FA) supplementation has a protective effect. To gain more insight into the molecular pathways affected by FA, TGF-β signaling and apoptosis in mouse embryonic palatal mesenchymal (MEPM) cells of all-trans retinoic acid (ATRA)-induced cleft palate in organ culture were tested. C57BL/6J mice embryonic palates were explanted on embryonic day 14 and cultured in DMEM/F12 medium with or without ATRA or FA for 72 h. The palatal fusion was examined by light microscopy. Immunohistochemistry was used to detect TGFβ3/TGF receptor II and caspase 9 in MEPM cells. TUNEL was used to detect apoptosis. Similar to development in vivo, palatal development and fusion were normal in control medium. ATRA inhibited palatal development and induced cleft palate, which can be rescued by FA. A higher apoptosis rate and caspase-9 in MEPM cells were detected in the ATRA group than in the control or the ATRA+FA group. Compared with the control or the ATRA+FA group, ATRA had little effect on TGF-β3 in MEPM cells but significantly inhibited TGF-β receptor II. Folic acid can rescue the cultured palates to continue developing and fusing that were inhibited and resulted in cleft palate by ATRA. Apoptosis and TGFβ signaling in MEPM cells were involved in folic acid rescued ATRA-induced cleft palate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call