The Kaohsiung Journal of Medical Sciences | VOL. 36
Read

Folic acid‐modified nonionic surfactant vesicles for gambogenic acid targeting: Preparation, characterization, and in vitro and in vivo evaluation

Publication Date Apr 15, 2020

Abstract

The aim of present study was to develop folic acid (FA)-modified nonionic surfactant vesicles (NISVs, niosomes) as carrier systems for targeted delivery of gambogenic acid (GNA). The FA-GNA-NISVs exhibited a mean particle size of 180.77 ± 2.41 nm with a narrow poly dispersion index of 0.147 ± 0.08 determined by dynamic light scattering. Transmission electron microscopy also revealed that the FA-GNA-NISVs were spherical with double-layer structure. Entrapment efficiency (EE%) and zeta potential of the optimal FA-GNA-NISVs were 87.84 ± 1.06% and -37.33 ± 0.33 mV, respectively. Differential scanning calorimetry demonstrated that the GNA was in a molecular or amorphous state inside the FA-NISVs in vitro release profiles suggested that FA-GNA-NISVs could release GNA at a sustained manner, and less than 60% of GNA was released from the FA-NISVs within 12 hours of dialysis. in vivo pharmacokinetic results illustrated that FA-GNA-NISVs had considerably higher Cmax , area under curve (AUC0 - t ) and accumulation in lung. The cell proliferation study shown that the FA-GNA-NISVs significantly enhanced the in vitro cytotoxicity against A549 cells. Flow cytometry and fluorescence microscopy further demonstrated that the FA-GNA-NISVs increased apoptosis compared with nonmodified GNA-NISVs and free GNA. Moreover, FA-GNA-NISVs induced A549 cell apoptosis in a dose-dependent manner. In addition, cellular uptake assays showed a higher uptake of FA-GNA-NISVs than GNA-NISVs as well as free GNA. Taken together, it could be concluded that FA-GNA-...

Concepts

Gambogenic Acid Induced A549 Cell Apoptosis Nonionic Surfactant Vesicles Hours Of Dialysis Accumulation In Lung Higher Cmax Double-layer Structure Entrapment Efficiency Folic Acid A549 Cell

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.