Abstract

The current study investigated the role of epigenetic dysregulation of brain derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP) genes and oxidative stress as possible mechanisms of autistic-like behaviors in neonatal isolation model in rats and the impact of folic acid administration on these parameters. Forty Wistar albino pups were used as follows: control, folic acid administered, isolated, and isolated folic acid treated groups. Isolated pups were separated from their mothers for 90 min daily from postnatal day (PND) 1 to 11. Pups (isolated or control) received either the vehicle or folic acid (4 mg/kg/day) orally from PND 1 to 29. Behavioral tests were done from PND 30 to 35. Oxidative stress markers and antioxidant defense in the frontal cortex homogenate were determined. DNA methylation of BDNF and GFAP genes was determined by qPCR. Histopathological examination was carried out. Neonatal isolation produced autistic-like behaviors that were associated with BDNF and GFAP hypomethylation, increased oxidative stress, increased inflammatory cell infiltration, and structural changes in the frontal cortex. Folic acid administration concurrently with isolation reduced neonatal isolation-induced autistic-like behaviors, decreased oxidative stress, regained BDNF and GFAP gene methylation, and ameliorated structural changes in the frontal cortices of isolated folic acid treated rats. Novelty: Neonatal isolation induces "autistic-like" behavior and these behaviors are reversed by folic acid supplementation. Neonatal isolation induces DNA hypomethylation of BDNF and GFAP, increased oxidative stress markers, and neuroinflammation. All of these changes were reversed by daily folic acid supplementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call