Abstract
We characterize compact eight-manifolds M which arise as internal spaces in N=1 flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation of M which carries a leafwise G2 structure, such that the O'Neill-Gray tensors, non-adapted part of the normal connection and torsion classes of the G2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C star algebra of the foliation is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from the four-form field strength, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of the foliation is dense in M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.