Abstract
We formalize the concepts of holomorphic affine and projective structures along the leaves of holomorphic foliations by curves on complex manifolds. We show that many foliations admit such structures, we provide local normal forms for them at singular points of the foliation, and we prove some index formulae in the case where the ambient manifold is compact. As a consequence of these, we establish that a regular foliation of general type on a compact algebraic manifold of even dimension does not admit a foliated projective structure. Finally, we classify foliated affine and projective structures along regular foliations on compact complex surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.