Abstract

Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200μM and Ti NPs at 50 and 100mg L-1 topically, together with Cd toxicity at 10 and 20mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20mgkg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, β-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200μM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.