Abstract

Differences in foliar morphology and anatomy of hard maples (Acer saccharum Marsh. and Acer nigrum Michx. f.) may explain contrasting responses to moisture stress of these species. We conducted a 2-year study to examine leaf morphology and anatomy of populations of hard maples indigenous near the 43°N latitude from 94°W longitude in Iowa to the 71°W longitude in Maine. Leaves were collected from shoots exposed to direct solar radiation on multiple trees at each of 24 sites in 1995, and at 36 sites in 1996. Samples collected in 1995 showed stomate frequency on the abaxial leaf surface ranged from 380 to 760 stomata/mm2. Mean guard cell pair width and length were 16 and 17 μm, respectively. Stomate frequency related quadratically to longitude, was greatest for leaves from Iowa, and was negatively correlated with mean annual precipitation of the sample site. Leaf thickness did not vary with longitude and averaged 96 μm. Palisade thickness showed a greater correlation than mesophyll thickness to total leaf thickness. Mesophyll thickness was more highly correlated than palisade thickness to specific leaf mass, which did not vary with longitude and averaged 5.2 mg·cm–2. Analysis of leaves collected over both years showed trichome frequency and lamina area were related quadratically to longitude; the largest and most pubescent laminae were from westerly sites. These studies are being coordinated with greenhouse experiments on responses of seedlings from selected populations to moisture deficits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.