Abstract
Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.