Abstract

Individual nanoparticle application has been documented to promote plant production; however, whether co-application of two nanoparticles (NPs) is more sustainable and significantly promotes plant production is unclear. Herein, foliar co-applications of two NPs or their conventional fertilizer forms on the growth, micronutrient (copper and zinc) enrichment, primary productivity, and essential oil (EO) production in a medicinal annual, dragonhead (Dracocephalum moldavica L.), were investigated. Treatments included 1:1 ratio of zinc oxide nanoparticles (ZnONPs):copper oxide nanoparticles (CuONPs) (40–400 mg/L), and compared with individual NPs, individual zinc suspension (ZnS) and chelated copper (chelated-Cu), and their combination, at equivalent concentrations. Results showed that the highest bioenrichment of Zn and Cu was observed with 80–160 mg/L ZnS+chelated-Cu, 400 mg/L ZnONPs+CuONPs, or ionic combination treatments. A dose-dependent increase in hydrogen peroxide and malondialdehyde was observed with co-treatment of NPs or ions, and oxidative stress responses were higher with NPs or ions co-treatment than individual treatment. With 160 mg/L ZnONPs+CuONPs treatment, total chlorophyll, aboveground biomass, and essential oil production increased significantly compared to control, 160 mg/L CuONPs, and 160 mg/L ZnONPs (227, 157 and 823 %; 58, 79, and 51 %; and 46, 80, and 3 %, respectively). Flavonoid and anthocyanin content also increased significantly (58 and 50 %, respectively) with ZnONPs+CuONPs compared to ZnS+chelated-Cu and were higher than ZnONPs or CuONPs alone by 10 and 25 %, and 37 and 36 %, respectively. More importantly, EO production and quality improved with 160 mg/L ZnONPs+CuONPs treatment compared to control. Taken together, our findings showed that foliar co-treatment of 160 mg/L ZnONPs+CuONPs could significantly improve primary productivity, aboveground biomass, and EO quality and yield in dragonhead grown in semi-arid field conditions; and thus, 160 mg/L ZnONPs+CuONPs is recommended as an optimal foliar co-treatment strategy for promoting sustainable plant production in semi-arid regions where soil nutrients and water are limiting factors inhibiting crop yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.