Abstract
Salicylic acid (SA) is an important plant regulator reported as a mitigator of water deficit in plants, however without a recommendation for use in field conditions. Thus, this research aims to validate the use of SA under field conditions in regions with low water availability. For that, we evaluated CO2 assimilation (A), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), and carboxylation efficiency (A/Ci) at 15, 30, and 45 days of continuous stress water deficit, as well as the application of salicylic acid (0.0; 0.5; 1.0; 1.5; 2.0 mM) in tomato plants subjected to continuous water deficit (45 days), in two years (2019 and 2020). The water deficit reduced the A, gs, E and A/Ci, while the foliar application of SA increased these parameters in all evaluated times, resulting in similar or even higher values than in plants without water deficit. Water deficit caused floral abortion in tomato plants, without the application of SA, reducing the number of fruit production. In contrast, plants that received about 1.3 mM of SA increased A and A/Ci and translocated the photo-assimilates, mainly to flowers and fruits, reducing floral abortion and increasing fruit production. Thus, foliar application of SA was efficient in mitigating the deleterious effects of water deficit in tomato plants regarding the gas exchange and fruit production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.