Abstract

Nano-fertilisers have only recently been introduced to intensify plant production, and there still remains inadequate scientific knowledge on their plant-related effects. This paper therefore compares the effects of two nano-fertilisers on common sunflower production under field conditions. The benefits arising from the foliar application of micronutrient-based zinc oxide fertiliser were compared with those from the titanium dioxide plant-growth enhancer. Both the zinc oxide (ZnO) and titanium dioxide (TiO2) were delivered by foliar application in nano-size at a concentration of 2.6 mg·L−1. The foliar-applied nanoparticles (NPs) had good crystallinity and a mean size distribution under 30 nm. There were significant differences between these two experimental treatments in the leaf surfaces’ trichomes diversity, ratio, width, and length at the flower-bud development stage. Somewhat surprisingly, our results established that the ZnO-NPs treatment induced generally better sunflower physiological responses, while the TiO2-NPs primarily affected quantitative and nutritional parameters such as oil content and changed sunflower physiology to early maturation. There were no differences detected in titanium or zinc translocation or accumulation in the fully ripe sunflower seeds compared to the experimental controls, and our positive results therefore encourage further nano-fertiliser research.

Highlights

  • Nanoparticles (NPs) are defined as chemical entities with at least one of their three dimensions less than 100 nm and have significantly different physical, chemical and biological properties to their macro-sized and dissolved ionic counterparts [1,2,3,4]

  • Our results established that the zinc oxide (ZnO)-NPs treatment induced generally better sunflower physiological responses, while the TiO2-NPs primarily affected quantitative and nutritional parameters such as oil content and changed sunflower physiology to early maturation

  • There were no differences detected in titanium or zinc translocation or accumulation in the fully ripe sunflower seeds compared to the experimental controls, and our positive results encourage further nano-fertiliser research

Read more

Summary

Introduction

Nanoparticles (NPs) are defined as chemical entities with at least one of their three dimensions less than 100 nm and have significantly different physical, chemical and biological properties to their macro-sized and dissolved ionic counterparts [1,2,3,4]. The NPs and nanomaterials have unique high surface energy and specific surface area and quantum size effects. This enables their frequent application in optical [5] and medical devices [6], electronics [7], pharmaceutics, and biotechnology [8,9,10]. The common sunflower is part of the Asteraceae family It is one of the most attractive world oil-bearing crops [26,27], and its by-products have been successfully incorporated in a wide spectrum of applications, including phytoremediation [28], green-fertilisation [29], animal feeding, and bio-fuels [30,31]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call