Abstract

There are few studies that relate the timing and amounts of pesticide washoff from plant foliage during rainfall to runoff losses at the edge of the field. We hypothesized that foliar deposits, if washed onto the soil slowly during rainfall, may then undergo less leaching during the period of infiltration that occurs prior to soil saturation and runoff, thus exhibiting larger runoff losses than pesticides on/in the soil at the beginning of rain. We measured the runoff of ethalfluralin, metolachlor, chlorothalonil, and rhodamine WT dye using simulated rainfall on 450 m2 mesoplots planted in peanut. Ethalfluralin was applied preplant incorporated, and metolachlor was applied preemergence on bare soil. Chlorothalonil and rhodamine WT were applied to the peanut canopy at maturity. Rainfall was simulated 24 h after each chemical application (in May and July, 1998, and May and August, 1999) using raindrop sprinklers, applying 5.5 +/- 0.5 cm over a 2 h period to create reasonable worst-case conditions; between 3 and 9 mm of runoff was generated. Volume-weighted average concentrations of chemicals in runoff were 7, 104, 163, and 179 ug L(-1) for ethalfluralin, metolachlor, chlorothalonil, and rhodamine WT, respectively. The total amounts of chemicals lost in the runoff events were 0.04 +/- 0.01, 0.2 +/- 0.1, 0.6 +/- 0.5, and 0.2 +/- 0.1, as percents of amounts applied, respectively. Rhodamine WT formed a vivid red solution on wetting and provided visual clues to the dynamics of chemical washoff/runoff. The washoff from rain-exposed peanut foliage appeared to be complete within a few minutes of the beginning of rainfall, and disappearance of dye from rain-exposed soil surface occurred within the first 10 min of rainfall. However, dye was present in runoff water at near-constant concentrations throughout the 2 h runoff event, indicating that near-constant amounts of chemical remained in the soil extraction zone. These results confirm earlier studies showing that soil incorporation at application significantly reduces runoff losses and that a majority of foliar residues can be washable if rainfall occurs within a few days after application. Runoff losses of foliar-applied pesticides were small relative to washoff amounts but were sensitive to runoff timing relative to washoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.