Abstract

Specific leaf area (SLA), the ratio of projected leaf area to leaf dry mass, is a critical parameter in many forest process models. SLA describes the efficiency with which the leaf captures light relative to the biomass invested in the leaf. It increases from top to bottom of a canopy, but it is unclear why. We sampled stands with low and elevated canopies (young and old stands) to determine whether SLA is related to water potential, as inferred from branch height and length, or shade, as inferred from branch position relative to the rest of the canopy, or both. We studied western white pine (Pinus monticola Dougl. ex D. Don), ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.), and interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) in northern Idaho. SLA decreased with branch height (P < 0.0001) at rates that varied among species (P < 0.0001). Branch length had no influence on SLA (P = 0.85). We detected no differences with canopy elevation (P = 0.90), but the slopes of lines relating SLA to branch height may have differed between the canopy elevation classes (P = 0.039). The results are consistent with predictions based on the hypothesis that SLA decreases as the gravitational component of water potential falls. The lack of a strong shading effect simplifies the estimation of canopy SLA for process models, requiring only species and branch heights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.