Abstract
While folds and pleats add interest to garments and cloth objects, incorporating them into an existing design manually or using existing software requires expertise and time. We present FoldSketch , a new system that supports simple and intuitive fold and pleat design. FoldSketch users specify the fold or pleat configuration they seek using a simple schematic sketching interface; the system then algorithmically generates both the fold-enhanced 3D garment geometry that conforms to user specifications, and the corresponding 2D patterns that reproduce this geometry within a simulation engine. While previous work aspired to compute the desired patterns for a given target 3D garment geometry, our main algorithmic challenge is that we do not have target geometry to start with. Real-life garment folds have complex profile shapes, and their exact geometry and location on a garment are intricately linked to a range of physical factors such as fabric properties and the garment's interaction with the wearer's body; it is therefore virtually impossible to predict the 3D shape of a fold-enhanced garment using purely geometric means. At the same time, using physical simulation to model folds requires appropriate 2D patterns and initial drape, neither of which can be easily provided by the user. We obtain both the 3D fold-enhanced garment and its corresponding patterns and initial drape via an alternating 2D-3D algorithm. We first expand the input patterns by allocating excess material for the expected fold formation; we then use these patterns to produce an estimated fold-enhanced drape geometry that balances designer expectations against physical reproducibility. We use the patterns and the estimated drape as input to a simulation generating an initial reproducible output. We improve the output's alignment with designer expectations by progressively refining the patterns and the estimated drape, converging to a final fully physically reproducible fold-enhanced garment. Our experiments confirm that FoldSketch reliably converges to a desired garment geometry and corresponding patterns and drape, and works well with different physical simulators. We demonstrate the versatility of our approach by showcasing a collection of garments augmented with diverse fold and pleat layouts specified via the FoldSketch interface, and further validate our approach via comparisons to alternative solutions and feedback from potential users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.