Abstract

The thermodynamics of protein folding are dictated by a complex interplay of interatomic interactions and physical forces. A variety of unnatural protein-like oligomers have the capacity to manifest defined folding patterns. While the energetics of folding in natural proteins is well studied, little is known about the forces that govern folding in modified backbones. Here, we explore the thermodynamic consequences of backbone alteration on protein folding, focusing on two types of chemical changes made in different structural contexts of a compact tertiary fold. Our results reveal a surprising favorable impact on folding entropy that accompanies modifications that increase disorder in the ensemble of unfolded states, due to differences in the solvation of natural and unnatural backbones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.