Abstract

A newly developed AMBER compatible force field with coupled backbone torsion potential terms (AMBER032D) is utilized in a folding simulation of a mini-protein Trp-cage. Through replica exchange and direct molecular dynamics (MD) simulations, a multi-step folding mechanism with a synergetic folding of the hydrophobic core (HPC) and the α-helix in the final stage is suggested. The native structure has the lowest free energy and the melting temperature predicted from the specific heat capacity Cvis only 12 K higher than the experimental measurement. This study, together with our previous study, shows that AMBER032Dis an accurate force field that can be used for protein folding simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.