Abstract

Hairpin ribozymes derived from (-)sTRSV RNA exhibit substantial cleavage activity when wobble GU base pairs are introduced in place of the AU pairs normally involved in helices I and II between substrate and ribozyme. This finding prompted us to synthesize by in vitro transcription a new hairpin ribozyme, active against a 14-mer substrate derived from a conserved HIV sequence. Interactions of the canonical and anti-HIV hairpin ribozymes with non cleavable DNA substrate analogues containing the photoaffinity probe deoxy-4-thiouridine (ds4U) at a single site were investigated. Upon near-UV light irradiation (365 nm), all these substrate analogues were covalently attached to ribozyme via single or multiple crosslinks. In contrast, no crosslinks were detected using either a DNA substrate analogue lacking ds4U or a ds4U containing oligomer unrelated to the substrate sequence. As expected, if the dissociation constant is in the range of 5-15 microM, the yield of crosslinked ribozyme increased markedly with increasing the substrate analogue concentration. The ribozyme residues involved in the crosslinks were determined by RNA sequencing. The pattern of crosslinks obtained with the two ribozyme systems provides additional evidence in support of the consensus secondary structure proposed for the hairpin domain. Minor alternative conformations were detected in the case of the (-)sTRSV system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.