Abstract

Conopeptides from >700 species of predatory marine Conus snails provide an impressive molecular diversity of cysteine-rich peptides. Most of the estimated 50,000-100,000 distinct conopeptides range in size from 10 to 50 amino acid residues, often with multiple posttranslational modifications. The great majority contain from two to four disulfide bridges. As the biosynthetic and chemical production of this impressive repertoire of disulfide-rich peptides has been investigated, particularly the formation of native disulfide bridges, differences between in vivo and in vitro oxidative folding have become increasingly evident. In this article, we provide an overview of the molecular diversity of conotoxins with an emphasis on the cysteine patterns and disulfide frameworks. The conotoxin folding studies reviewed include regioselective and direct oxidation strategies, recombinant expression, optimization of folding methods, mechanisms of in vitro folding, and preliminary data on the biosynthesis of conotoxins in venom ducts. Despite these studies, how the cone snails efficiently produce properly folded conotoxins remains unanswered. As chemists continue to master oxidative folding techniques, insights gleaned from how conotoxins are folded in vivo will likely lead to the development of the new folding methods, as well as shed some light on fundamental mechanisms relevant to the protein folding problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.