Abstract

A series of oligmers with donor-acceptor pairs separated by diisopropylsilylene (iPr(2)Si) spacers, composed of monomer 4b, dimer 5, trimer 6, and tetramer 7, were synthesized to scrutinize the folding behavior. Monomer 4a with a dimethylsilylene (Me(2)Si) spacer was also prepared for comparison. The 4-aminostyrene moiety was used as the donor and the stilbene moiety as the acceptor. Both steady-state and time-resolved fluorescence spectroscopic measurement were made. Regardless of the substituents on the silicon atom, the emission spectra of 4a and 4b exhibit both local excited (LE) emission of the acceptor chromophore and emission from the charge-separated state (CT emission), which are similar to that of the corresponding Me(2)Si-spaced copolymer 2a with the same donor and acceptor chromophores, but different from that of the copolymer with the iPr(2)Si spacer 2b. Dimer 5 behaves like 4 and 2a. As the chain length of the oligomers increases, the emission properties of the higher homologues become prone to that of 2b. Thus, tetramer 7 exhibits emission from the charge-transfer complex, which is essentially same as that of 2b. Moreover, charge-transfer absorptions emerge in 6 and 7. These results suggest that the folding nature of oligomers approaches that of the corresponding polymer, as the degree of oligomerization increases, and the electronic interactions between adjacent donor-acceptor pairs are controlled by the steric effect of the substituents on the silicon atoms and concomitant amplification of the stabilizing energy by extending the distance of the folding structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.