Abstract

Bis(imino) end-functionalized oligo(m-phenylene ethynylene)s were equilibrated in a closed system under conditions that promote reversible imine metathesis. The metathesis reaction joins two oligomers and produces a small molecule byproduct. In polar solvents, equilibration gave high molecular weight polymers while equilibration in chloroform produced only low molecular weight oligomers. This polymerization is hypothesized to be driven by the free energy gained from the folding of the long polymer chains directed by the noncovalent, intramolecular aromatic stacking and solvophobic interactions. This polymerization was also conducted in a series of solvents in which m-phenylene ethynylene oligomers have previously shown varied, intermediate folding stabilities. These experiments revealed a good correlation of the product molecular weight with the stability of the m-phenylene ethynylene helix. The equilibrium state of the metathesis reaction was also demonstrated to depend on the chain length of the starter...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.