Abstract
Aim: A major challenge in the development of new antibiotics is the biocompatibility within biological environment. Ionic complementary peptide (EAK-16) from amyloid protein, have the ability to adopt secondary structure conformation at membrane interfaces. This study aimed to investigate the effect of membrane on EAK-16 peptide folding and their antibacterial applications.
 Methodology: We studied secondary structural conformation of EAK-16 using circular dichroism (CD) spectroscopy in an aqueous environment and at membrane bilayers interfaces. Initially, the antibacterial efficacy was investigated against both Gram-positive and Gram-negative bacteria. Membrane mimicking models were synthesised with dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS) lipid vesicles using calcein leakage assay.
 Results: EAK-16 showed transition in secondary structural conformation. In aqueous environment, it was predominantly β-sheets and at membrane interfaces, it was mainly α-helical. EAK-16 peptide was highly active against bacteria (at minimum concentration applied) and membrane leakage was found to be > 60%. This effect was confirmed with both anionic lipids (DMPS) and neutral lipids (DMPC). The helical transition of EAK-16 could be a major factor to disrupt the membrane and bacterial death
 Conclusion: The secondary structural conformation and calcein leakage data suggest that EAK-16 has potential to kill bacteria by adopting helical tilted conformation and membrane perturbation via lysis. This study revealed structure-function relationship of peptide and lipid bilayers to further investigate the mode of pore formation and mode of action of EAK-16 in membrane perturbation and antibacterial efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.