Abstract

We studied the stability and folding and unfolding kinetics of the tryptophan zipper, containing different double thioamide subsitutions. Conformation change was triggered by photoisomerization of an integrated AMPP photoswitch in the turn region of the hairpin, and transient spectra were recorded in the deep UV and the mid-IR, covering the time window of the (un)folding transition from picoseconds to tens of microseconds. Thio-substitution of inward-pointing backbone carbonyls was found to strongly destabilize the β-hairpin structures, whereas molecules with two outward pointing thio-carbonyls showed similar or enhanced stability with respect to the unsubstituted sequence, which we attribute to stronger interstrand hydrogen bonding. Thiolation of the two Trp residues closest to the turn can even prevent the opening of the hairpin after cis-trans isomerization of the switch. The circular dichroism due to the two thioamide ππ* transitions is spectrally well-separated from the aromatic tryptophan signal. It changes upon photoswitching, reflecting a local change in coupling and geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call