Abstract

To study the influence of whole secondary structure elements to the process of folding and amyloid-fibril formation, chimeras of stefins have been prepared. GdnHCl denaturation curves and folding rates (chevron plots) have been analyzed based on a two-state mechanism. The order of stability is: stefin A > aAbbbb > bAbbbb > stefin B = aBaaaa > bBaaaa, where the make up of chimeric proteins is designated by small letters representing the source of individual strands (a for stefin A, b for stefin B) and a capital letter representing the source of the helix (A for stefin A and B for stefin B). Only the fast folding reactions were included in the analysis and it has been found that stefin B folds the fastest (657 s(-1)). Similarly, fast folders are the chimeric proteins aBaaaa and bBaaaa, both of which contain the alpha-helix of stefin B. Unfolding rates correlate very well with protein stability, with the slowest rate for the most stable protein, stefin A. Amyloid-fibril growth was measured for each protein by monitoring thioflavin T fluorescence and was visualized using electron microscopy. The propensity to form amyloid-fibrils is in the order: stefin B > bAbbbb > aAbbbb > bBaaaa > aBaaaa > stefin A. This order does not correlate with stability, or with the folding or unfolding rates. Instead, the propensity to fibrillize is related to selected parts of structure, such as the beta-sheet of stefin B, and can be predicted reasonably well by calculating the beta-strand propensity of the denatured states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.