Abstract
Foldable polymers with alternating single-strand deoxyribonucleic acid (ssDNA) and planar fluorescent organic chromophores can self-organize into folded nanostructures and hence are hybrid foldamers with biological sequences and synthetic properties. The biological sequence provides highly specific molecular recognition properties, while the physical properties of synthetic chromophores offer sensitive fluorescence detection. In this paper, we describe that rational designed hybrid foldamers exhibit potential in the detection of polynucleotides. Under strictly controlled laboratory conditions, fluorescence measurements indicate that configuration change due to binding of polynucleotides with one or two mismatched bases can be readily distinguished. These results shed light on the design and construction of nanostructured foldamers with actuator and sensory properties, which may find important applications as biological probes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.