Abstract

Challenges in the understanding of three-dimensional (3D) brain networks by simultaneously recording both surface and intracortical areas of brain signals remain due to the difficulties of constructing mechanical design and spatial limitations of the implanted sites. Here, we present a foldable and flexible 3D neural prosthetic that facilitates the 3D mapping of complex neural circuits with high spatiotemporal dynamics from the intracortical to cortical region. This device is the tool to map the 3D neural transmission through sophisticatedly designed four flexible penetrating shanks and surface electrode arrays in one integrated system. We demonstrate the potential possibilities of identifying correlations of neural activities from the intracortical area to cortical regions through continuous monitoring of electrophysiological signals. We also exploited the structural properties of the device to record synchronized signals of single spikes evoked by unidirectional total whisker stimulation. This platform offers opportunities to clarify unpredictable 3D neural pathways and provides a next-generation neural interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.