Abstract
The standard models of the milling process describe the surface regeneration effect by a delay-differential equation with constant time delay. In this study, an improved two degree of freedom model is presented for milling process where the regenerative effect is described by an improved state dependent time delay model. The model contains exact nonlinear screen functions describing the entrance and exit positions of the cutting edges of the milling tool. This model is valid in case of large amplitude forced vibrations close to the near-resonant spindle speeds. The periodic motions of this nonlinear system are calculated by a shooting method. The stability calculation is based on the linearization of the state-dependent delay differential equation around these periodic solutions by means of the semi-discretization method. The results are validated by an advanced numerical time domain simulation where the chip thickness is calculated by means of Boolean algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.