Abstract

To investigate the uptake of a poly(amidoamine) dendrimer (generation 5 [G5]) nanoparticle covalently conjugated to polyvalent folic acid (FA) as the targeting ligand into macrophages, and to investigate the activity of an FA- and methotrexate (MTX)-conjugated dendrimer (G5-FA-MTX) as a therapeutic for the inflammatory disease of arthritis. In vitro studies were performed in macrophage cell lines and in isolated mouse macrophages to check the cellular uptake of fluorescence-tagged G5-FA nanoparticles, using flow cytometry and confocal microscopy. In vivo studies were conducted in a rat model of collagen-induced arthritis to evaluate the therapeutic potential of G5-FA-MTX. Folate-targeted dendrimer bound and internalized in a receptor-specific manner into both folate receptor β-expressing macrophage cell lines and primary mouse macrophages. The conjugate G5-FA-MTX acted as a potent antiinflammatory agent and reduced arthritis-induced parameters of inflammation such as ankle swelling, paw volume, cartilage damage, bone resorption, and body weight decrease. The use of folate-targeted nanoparticles to specifically target MTX into macrophages may provide an effective clinical approach for antiinflammatory therapy in rheumatoid arthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.