Abstract

For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin–polyethylene glycol–folate (DOX–PEG–FOL) conjugate. Doxorubicin and folate were respectively conjugated to α- and ω-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. Hydrophobically deprotonated doxorubicin molecules were aggregated within the core, while the DOX–PEG–FOL conjugates stabilized the aggregates with exposing folate moieties on the surface. The doxorubicin nano-aggregates showed a greater extent of intracellular uptake against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the cellular uptake occurred via a folate-receptor-mediated endocytosis mechanism. They also exhibited more potent cytotoxic effect on KB cells than free doxorubicin. In a human tumor xenograft nude mouse model, folate-targeted doxorubicin nano-aggregates significantly reduced the tumor volume compared to non-targeted doxorubicin aggregates or free doxorubicin. These results suggested that folate-targeted doxorubicin nano-aggregates could be a potentially useful delivery system for folate-receptor-positive cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.