Abstract

For folate-receptor-targeted anticancer therapy, docetaxel (DTX) nanoparticles (NPs) were produced employing polylactide-co-glycolide–polyethylene glycol–folate (PLGA–PEG–FOL) conjugate. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA–PEG–NH2 di-block copolymer with an activated folic acid. It was expected that FOL moieties were exposed on the micellar surface.The conjugates assisted in the formation of DTX NPs with an average size of 200 nm in diameter through an emulsification/solvent diffusion method. The FOL-targeted NPs showed a greater extent of intracellular uptake in FOL-receptor-positive cancer cells (SKOV3) in comparison with the non-targeted NPs, indicating that the FOL-receptor-mediated endocytosis mechanism could have a role in the cellular uptake of NPs. These results suggested that FOL-targeted DTX NPs could be a potentially useful delivery system for FOL-receptor-positive cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.