Abstract

PLK1 is a promising target for clinical treatment of diverse malignancies including ovarian cancer (OC), in which PLK1 over-expression is often correlated with poor prognosis and short survival. PLK1 can be blocked with small molecular inhibitors like volasertib (Vol) or silenced with PLK1-specific siRNA (siPLK1), hence effectively suppressing tumor growth. Surprisingly, despite intensive work on molecular inhibitor and siRNA therapeutics, there is no direct comparison between them reported for targeted tumor therapy. Herein, we employing folate as a ligand and polymersomes as a nanovehicle performed a comparative study on Vol and siPLK1 in inhibiting OC in vitro and in vivo. Folate-targeted polymersomal Vol and siPLK1 (termed as FA-Ps-Vol and FA-Ps-siPLK1, respectively) were both nano-sized and stable, and displayed an optimal FA density of 20% for SKOV-3 cells. Notably, FA-Ps-Vol and FA-Ps-siPLK1 exhibited an IC50 of 193 and 770 nM, respectively, to SKOV-3 cells, indicating a greater potency of Vol than siPLK1. The markedly increased uptake for FA-Ps-Vol and FA-Ps-siPLK1 compared with respective non-targeted controls by SKOV-3 tumor xenografts in mice confirmed that FA mediates strong OC-targeting in vivo. Intriguingly, FA-Ps-Vol while greatly lessening toxic effects of Vol potently repressed tumor growth with a remarkable tumor inhibition rate (TIR) of 97% at 20 mg (i.e. 32.4 µmol) Vol equiv./kg. FA-Ps-siPLK1 achieved effective tumor inhibition (TIR = ca. 87% or 90%) at 2 or 4 mg (i.e. 0.15 or 0.3 µmol) siPLK1 equiv./kg without causing adverse effects. This comparative study highlights that molecular inhibitor has the advantage of easy dose escalation and potent protein inhibition at the expense of certain adverse effects while siRNA therapeutics has low toxicity with moderate protein inhibition in vivo. Statement of significancePLK1 is a promising target for the development of innovative and specific treatments against diverse malignancies. Interestingly, despite intensive work on molecular inhibitors and siRNA against PLK1, little work has been directed to compare their efficacy in targeted tumor therapy. Here, we employed folate as a ligand and polymersomes as a nanovehicle and have performed a comparative study on volasertib and siPLK1 in inhibiting ovarian cancer in vitro and in vivo. Our data show that the dose of volasertib can be easily escalated to induce prominent antitumor efficacy at the expense of certain adverse effects, while siPLK1 brings about moderate protein inhibition and antitumor therapy without causing toxicity at two-orders-of-magnitude lower dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call