Abstract
As hydroxyapatite (HAp) with the hexagonal crystal structure is biocompatible and bioactive. In the present study, HAp nanoparticles were synthesized and functionalized with polyethylene glycol and folic acid. The anticancer drug, epirubicin, was loaded to the folic acid-conjugated polyethylene glycol-coated HAp (FA-PEG-HAp) nanoparticles. The prepared nanoparticles were used for in vitro and in vivo experiments. Particle size analyzer showed that the hydrodynamic size of PEG-HAp and FA-PEG-HAp nanoparticles was 150.3 ± 1.5 nm and 217.2 ± 14.9 nm, respectively. The release behavior of epirubicin from nanoparticles showed an increase in the rate of release in acidic pH. The released drug in acidic pH was 2.5 fold more than pH 7.4. The results of in vitro study indicated an increase in cellular uptake of nanoparticles due to folate ligand. In vivo treatment with both PEG-HAp and FA-PEG-HAp nanoparticles had notably higher inhibition efficacy towards tumor growth than free epirubicin. In conclusion, folate conjugation provided higher uptake and better targeting of hydroxyapatite nanoparticles to cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.