Abstract
Surface functionalization is one of the key steps toward the utilization of mesoporous materials in drug delivery system. Here, the folic acid (FA) ligands are conjugated onto poly(ethylene imine) (PEI) modified SBA-15 particles (PEI/SBA-15) via amide reaction, which results in the FA/PEI/SBA-15 particles. Doxorubicin hydrochloride (DOX), an anticancer drug, is successfully loaded into these particles. The in vitro cytotoxicity and cellular uptake of the empty FA/PEI/SBA-15 particles and the DOX-loaded ones are evaluated on two kinds of cancer cells (HeLa cells and A549 cells). Specifically, an excellent cellular uptake using the current anticancer drug delivery vehicles (DOX-loaded FA/PEI/SBA-15 particles) mediated by the FA receptor is demonstrated by fluorescence microscope and flow cytometry. The FA/PEI/SBA-15 particles demonstrate a lower cytotoxicity comparing with the PEI/SBA-15 particles, while the DOX-loaded FA/PEI/SBA-15 particles exhibit much greater inhibition to the studied cancer cells. Furthermore, the in vitro release study shows that the targeted FA/PEI/SBA-15 particles have a typical sustained release behavior. This work therefore demonstrates that drug-loaded FA/PEI/SBA-15 particles have great potential application in targeted anticancer drug delivery for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.