Abstract

Photo-redox chemistry resulting from ligand to metal charge transfer in red-light-activable iron(III) complexes could be a potent strategic tool for next-generation photochemotherapeutic applications. Herein, we developed an iron(III) complex and folate co-functionalized gold nanoconjugate (Fe@FA-AuNPs) and thoroughly characterized it with NMR, ESI MS, UV-visible, EPR, EDX, XPS, powder X-ray diffraction, TEM and DLS studies. There was a remarkable shift in the SPR band of AuNPs to 680 nm, and singlet oxygen (1O2) and hydroxyl radicals were potently generated upon red-light activation, which were probed by UV-visible and EPR spectroscopic assays. Cellular uptake studies of the nanoconjugate (Fe@FA-AuNPs) revealed significantly higher uptake in folate(+) cancer cells (HeLa and MDA-MB-231) than folate(-) (A549) cancer cells or normal cells (HPL1D), indicating the targeting potential of the nanoconjugate. Confocal imaging indicated primarily mitochondrial localization. The IC50 values of the nanoconjugate determined from a cell viability assay in HeLa, MDA-MB-231, and A549 cells were 27.83, 39.91, and 69.54 μg mL-1, respectively in red light, while in the dark the values were >200 μg mL-1; the photocytotoxicity was correlated with the cellular uptake of the nanoconjugate. The nanocomposite exhibited similar photocytotoxicity (IC50 in red light, 37.35 ± 8.29 μg mL-1 and IC50 in the dark, >200 μg mL-1). Mechanistic studies revealed that intracellular generation of ROS upon red-light activation led to apoptosis in HeLa cells. Scratch-wound-healing assays indicated the inhibition of the migration of MDA-MB-231 cells treated with the nanoconjugate and upon photo-activation. Overall, the nanoconjugate has emerged as a potent tool for next-generation photo-chemotherapeutics in the clinical arena of targeted cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call