Abstract

We consider self-propelled particles confined between two parallel plates, moving with a constant velocity while their moving direction changes by rotational diffusion. The probability distribution of such micro-organisms in confined environment is singular because particles accumulate at the boundaries. This leads us to distinguish between the probability distribution densities in the bulk and in the boundaries. They satisfy a degenerate Fokker–Planck system and we propose boundary conditions that take into account the switching between free-moving and boundary-contacting particles. Relative entropy property, a priori estimates and the convergence to an unique steady state are established. The steady states of both the PDE and individual based stochastic models are compared numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.