Abstract

The interaction of femtosecond laser pulses with solid-state density plasmas in regime of normal skin effect is investigated by means of numerical simulation. For short-wavelength lasers and laser pulses with length ≲ 120 fs full width at half maximum, the regime of normal skin effect is shown to hold for peak intensities up to 1017 W/cm2. The basic characteristics of the interaction are revealed and certain departures from simplistic models in electron distribution function, in plasma dielectric constant, and in laser absorption are pointed out. Comparison with the published experimental results is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.