Abstract

A new foil gas bearing with spring bumps was constructed, analyzed, and tested. The new foil gas bearing uses a series of compression springs as compliant underlying structures instead of corrugated bump foils. Experiments on the stiffness of the spring bumps show an excellent agreement with an analytical model developed for the spring bumps. Load capacity, structural stiffness, and equivalent viscous damping (and structural loss factor) were measured to demonstrate the feasibility of the new foil bearing. Orbit and coast-down simulations using the calculated stiffness and measured structural loss factor indicate that the damping of underlying structure can suppress the maximum peak at the critical speed very effectively but not the onset of hydrodynamic rotor-bearing instability. However, the damping plays an important role in suppressing the subsynchronous vibrations under limit cycles. The observation is believed to be true with any air foil bearings with different types of elastic foundations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.