Abstract

The outcomes of the study of plant surfaces, such as rice leaves or bamboo leaves, have led to extensive efforts being devoted to fabricating anisotropic arrays of micro/nanoscale features for exploring anisotropic droplet spreading. Nonetheless, precise engineering of the density and continuity of three-phase contact lines for anisotropic wetting remains a significant challenge without resorting to chemical modifications and costly procedures. In this work, we investigated secondary electrohydrodynamic instability in polymer films for producing secondary nanosized patterns between the micrometer-sized grooves by controlling the timescale parameter, 1/τm (>10-4 s-1). We experimentally demonstrated facile morphological control of anisotropic wettability without the use of any chemical modifications. Thus, anisotropic hydrophilic surfaces fabricated by the secondary phase instability of polymer films are advantageous for both droplet condensation and removal, thereby outperforming the water collection efficiency of conventional (isotropic) hydrophilic surfaces in water harvesting applications (∼200 mg·cm-2·h-1) with excellent durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.