Abstract

ABSTRACTA theoretical model of liquid metal ion source (LMIS) operation has been developed by Kingham and Swanson. In this paper we consider beams from LMIS on the basis of this model. In particular we consider properties such as angular intensity, energy spread and relative abundance of differently charged species of the ion beam, and the dependence of these properties on source current and elemental composition. The conclusion is that the brightest focussed beam for a given probe size is attainable at the lowest possible source current as previously stated by Swanson. LMIS sources have an onset current of typically 1-2[A and will not operate stably below this current, thus limiting the maximum focussed ion beam brightness. The physical reason for this is discussed. The relevance of these properties to fine focussed ion beam applications, particularly semiconductor processing, is discussed. Useful, and in some cases unique, device manufacturing techniques can be postulated using one or more of the momentum, energy or atomic addition properties inherant tothis type of system. Advanced research tools are discussed, together with some examples of the use of microfocussed ion beams with probe sizes down to less than 50nm. Immediate applications include: high resolution ion imaging and SIMS microanalysis; ion beam machining and microfabrication; ion beam resist exposure and ion beam mask repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.