Abstract

Imaging properties of two-dimensional photonic crystal slab lens consisting of a triangular lattice of ring-shaped air holes in a high-refraction-index dielectric medium have been studied. The results calculated by the plane wave expansion method (PWE) and the finite-difference time-domain method (FDTD) show that the effective index n=-1 can be realized in this structure. A perfect image can be obtained by increasing the inner radius of ring-shaped holes from 0 to 0.13a with the outer radius 0.4a at the normalized frequency 0.3(a/λ). Based on the result of normalized frequency with effective refraction index -1 versus inner radius of ring-shaped holes we theoretically analyzed the effects of structure parameters to equifrequency contours of respective normalized frequency and imaging properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.