Abstract
In this Letter, a three-parameter modified Kaiser apodization window is used to modulate the pinhole density on each ring of hard x-ray photon sieves, analyzing the guided-wave propagation inside the photon sieves' nanostructure. Theoretical analysis reveals that the waveguide effect can suppress the emergence of the high-order diffraction effect; the additional parameter of the modified Kaiser window function gives rise to new degrees of freedom for manipulating the FWHM and signal-to-noise ratio. Metal nanostructure thickness has no influence on the FWHM. Hard x-ray photon sieves with 90 degrees phase shift (not 180 degrees phase shift) can provide the best signal-to-noise ratio, which relaxes the nanofabrication constraints somewhat. Our work provides a robust way to design hard x-ray photon sieves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.