Abstract

To meet the International Roadmap for Device and Systems (IRDS), the development of an advanced lithography process for next-generation (NG) technology node is a vital and challenging task, as we are reaching to its physical limits. In the progress of high volume manufacturing (HVM) at sub-12 nm node, it is very important that resist materials should possess low line edge roughness (LER) and high sensitivity (E0) using extreme ultraviolet (EUV) and its analogous exposure systems. Apart from standard chemically amplified resist (CAR), acid-free non-CAR has been studied immensely as a potential candidate for NG patterning. To achieve sub-12 nm patterns, a complete study for newly developed n-CAR is required to make sure that developed resist formulation is performing optimally. Aside from the n-CARs, we adopted a novel patterning approach using He<sup>+</sup> ion beam lithography with less proximity effect. Here we present the metallic nanoparticle photo-multiplier (high optical density materials for λ ~13.5 nm) embedded with n-CAR for better photo-absorption and high-resolution pattern development. The silver (Ag- OD 12 w.r.t Carbon) nanoparticles (NPs) with ~2 nm regime were embedded into MAPDST homo-polymer ((4-(methacryloyloxy)phenyl) dimethylsulfonium trifluoromethanesulfonate). To investigate the high-resolution patterning synthesized photoresist was exposed to e-beam (E<sub>e</sub>) and Helium ion (E<sub>He</sub>) beam lithography. The patterned samples were developed in aqueous solution and revealed the negative tone with the sensitivity of 172 μC/cm<sup>2 </sup>and 50.4 μC/cm<sup>2</sup> for E<sub>e</sub> and E<sub>He</sub> respectively. The MAPDST-Ag resist found stable for more than 1 year, which clearly suggests that there is no sign of Ag-NPs agglomeration in the formulation. Thence, evidently, prove the considerable shelf life of developed resist formulation and can be used in NG semiconductor device HVM and other electronic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.