Abstract
Theoretical formalism using vectorial Rayleigh diffraction integrals is developed to calculate the electric field components z y x E E E , of generalized vector-vortex (VV) beams of different phase and polarization characteristics as a function of propagation distance ‘z’ in the focal region of an axicon. This formalism is used to generate sub-wavelength spot-size (0.43λ) ultra-long length (80λ) longitudinally-polarized optical needle beam by appropriately selecting the phase and polarization characteristics of the input VV beam. The formalism is further extended to also generate purely transverse polarized beam with similar characteristics. The focusing process leads to interference between different field components of the beam resulting in the formation of C-point polarization singularities of index Ic = ±1 whose transverse characteristics evolve with propagation distance. Experimental results to support our theoretical calculations are presented along with lens focus comparison results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.