Abstract
ABSTRACT We develop a fully non-linear approximation to the short-wavelength limit of eccentric waves in astrophysical discs, based on the averaged Lagrangian method of Whitham. In this limit there is a separation of scales between the rapidly varying eccentric wave and the background disc. Despite having small eccentricities, such rapidly varying waves can be highly non-linear, potentially approaching orbital intersection, and this can result in strong pressure gradients in the disc. We derive conditions for the steepening of non-linearity and eccentricity as the waves propagate in a radially structured disc in this short-wavelength limit and show that the behaviour of the solution can be bounded by the behaviour of the WKB solution to the linearized equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.