Abstract

The signal processing of the medium-Earth-orbit synthetic aperture radar (SAR) is more challenging than that of the current low-Earth-orbit SAR because the imaging geometry is more complicated, and the range and azimuth variances are more severe. This paper deals with these imaging problems in three aspects. First, an advanced hyperbolic range equation (AHRE) is proposed for the first time, which is more precise for a spaceborne SAR than the conventional hyperbolic range equation (CHRE). Second, the point target spectrum based on the AHRE is analytically derived, which is useful for developing efficient SAR processing algorithms. Third, the well-known nonlinear chirp scaling (NLCS) algorithm is modified according to this new spectrum, and the so-called AHRE-based advanced NLCS (A-NLCS) algorithm is established. The simulation results validate the correctness of our method for L-band SAR systems at altitudes from 1000 to 10 000 km with an azimuth resolution around 3 m. It is also shown that the A-NLCS algorithm has better performance than the CHRE-based algorithms in longer integration time cases. Therefore, we recommend the A-NLCS algorithm for a spaceborne SAR with a lower frequency, finer resolution, and higher satellite altitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.