Abstract

We report on measurements of the focusing of high-current, large-area beams of heavy metal ions using an electrostatic plasma lens. Tantalum ion beams were formed by a repetitively pulsed vacuum arc ion source, with energy in the 100 keV range, current up to 0.5 A, initial beam diameter 10 cm, and pulse length 250 μs. The plasma lens was of internal diameter 10 cm and length 20 cm, and had nine electrostatic ring electrodes with potential applied to the central electrode of up to 7 kV, in the presence of a pulsed magnetic field of up to 800 G. The current-density profile of the downstream, focused, ion beam was measured with a radially moveable, magnetically suppressed, Faraday cup. The tantalum ion-beam current density at the focus was compressed by a factor of up to 30. The results are important in that they provide a demonstration of a means of manipulating high-current ion beams without associated space-charge blowup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call