Abstract

In this paper, diffraction pattern of a vortex carrying beam with a Gaussian background has been studied by using Fresnel–Kirchhoff diffraction integral, in the presence of third-order coma. Results of intensity distribution and encircled energy at the Gaussian plane have been presented for two values of the topological charge. Positional shift and splitting of the dark core have been investigated in detail. It is noticed that the diffraction pattern of a beam with double topological charge is affected more by comatic aberration in comparison to the beam with single topological charge. We have also verified our results by using the optical transfer function approach. Propagation of an apertured Gaussian background vortex beam through a π-phase shifter has also been studied for two values of the topological charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.