Abstract

Two recent papers, “Utility of high-altitude infrared spectral data in mineral exploration: Application to northern Patagonia Mountains, Arizona,” by Berger et al. (2003), and “Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system,” by Rowan et al. (2003), make a distinctive mark on the use of airborne and satellite hyperspectral imaging as an exploration tool.These two papers deal with imaging of the Earth’s surface using the visible (0.4 μm) to near infrared (2.5 μm) part of the electromagnetic spectrum to map various mineral species. Depending on their structure and molecular bonding, minerals reflect and absorb the electromagnetic spectrum in unique ways. A large group of minerals have distinct electromagnetic signatures that make it possible to identify them from imaging systems that map the range of the electromagnetic spectrum between 0.5 and 2.5 μm.These papers represent two distinct approaches. The first paper, by Berger et al., discusses the use of the AVIRIS (Airborne Visible Infrared Imaging Spectrometer) scanner, which provides high-resolution reflectance measurements in the spectral domain (224 channels between 0.4 and 2.45 μm) and variable spatial resolution (20 m), dependent on aircraft altitude. The second paper, by Rowan et al., discusses the use of the ASTER satellite scanner, which offers a limited range of spectra at three spatial resolutions (15, 30, and 90 m). ASTER measures reflectance radiation in 3 bands within the 0.52- to 0.86-μm range (visible-near-infrared) at 15-m spatial resolution, and 6 bands between 1.00 and 2.43 μm (short wave infrared) at 30-m spatial resolution. Emitted radiation is measured in 5 bands between 8.125 and 11.650 μm (thermal infrared) with a 90-m spatial resolution.The main advantage of the AVIRIS sensor is the level of spectral detail, which provides accurate measurements of reflectance and absorption features of minerals that enables detailed mineral mapping. Its main disadvantages, however, are the extensive processing required to make the reflectance spectra useful, and its limited spatial coverage and acquisition cost based on programmed flights. In contrast, the main advantage of the ASTER sensor is that it measures key portions of the visible, near-infrared, and thermal infrared spectra of minerals for large-scale mapping projects, whereas its main disadvantage is that the data represent only portions of the electromagnetic spectrum and some minerals cannot be distinctively mapped. In addition, the lower spatial resolution in the near-and thermal infrared portions of the spectrum makes it more difficult to map at detailed scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.