Abstract

The possibility of using a parabolic refractive lens with initial X-ray free-electron laser (XFEL) pulses, i.e. without a monochromator, is analysed. It is assumed that the measurement time is longer than 0.3 fs, which is the time duration of a coherent pulse (spike). In this case one has to calculate the propagation of a monochromatic wave and then perform an integration of the intensity over the radiation spectrum. Here a general algorithm for calculating the propagation of time-dependent radiation in free space and through various objects is presented. Analytical formulae are derived describing the properties of the monochromatic beam focused by a system of one and two lenses. Computer simulations show that the European XFEL pulses can be focused with maximal efficiency, i.e. as for a monochromatic wave. This occurs even for nanofocusing lenses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.