Abstract

AbstractSeismic wave amplitudes have tremendous sensitivity to subduction structure; however, they are affected by attenuation, scattering and focusing, and have therefore been sparsely used compared with traveltimes. We measure and model teleseismic body wave amplitudes recorded at a dense broadband array in the Washington Cascades. These data show anomalous amplitude variations with complex azimuthal dependence at frequencies as low as 0.05 Hz, accompanied by significant multipathing. We demonstrate using spectral‐element numerical simulations that focusing of the teleseismic wavefield by the Juan de Fuca slab is responsible for some of the amplitude anomalies. The focusing effects can contaminate the apparent differential attenuation measurements and produce at least 20% of the inferred attenuation signal. Our results indicate that the amplitudes are sensitive to the subducting slab geometry and subduction structure, and can be used to refine seismic images. Ubiquitous and consistent amplitude anomalies are observed along the arc, suggesting that the Juan de Fuca slab may be continuous from Canada to northern California.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call